Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production
نویسندگان
چکیده
Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm-2), leaf area index (RMSE = 0.67 m²·m-2), canopy chlorophyll (RMSE = 0.24 g·m-2) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm-2, 0.85 m²·m-2, 0.28 g·m-2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors, and their integration, have great potential for monitoring this specific organic cropping system.
منابع مشابه
Correction: Domingues Franceschini, M.H.; et al. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production. Sensors 2017, 17, 1428
The authors would like to correct Figure 13 and Table A2, as well as the text related to the data presented in both of them, as indicated below, considering that an error in the calculations involving Equation (2), described in the Section 2.8 of the Materials and Methods Section, resulted in the communication of incorrect values [...].
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملHyper-spectral frequency selection for the classification of vegetation diseases
Reducing the use of pesticides by early visual detection of diseases in precision agriculture is important. Because of the color similarity between potato-plant diseases, narrow band hyper-spectral imaging is required. Payload constraints on unmanned aerial vehicles require reduction of spectral bands. Therefore, we present a methodology for per-patch classification combined with hyper-spectral...
متن کاملDevelopment and prospect of unmanned aerial vehicle technologies for agricultural production management
Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared with piloted aircraft, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields at lower flight altitudes than regular aircraft to perform site-specific farm management with higher precision. They can also “fill in the gap” in locations where fixed winged or rotary winged airc...
متن کامل